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ABSTRACT

This paper presents an analytical procedure to simulate vibrations in
gear transmission systems. This procedure couples the dynamics of the rotor-
bearing gear system with the vibration in the gearbox structure. The modal
synthesis method is used in solving the overall dynamics of the system, and a
variable time-stepping integration scheme is used in evaluating the global
transient vibration of the system. Locally each gear stage is modelled as a
multimass rotor-bearing system using a discrete model. The modal
characteristics are calculated using the matrix-transfer technique. The
gearbox structure is represented by a finite element model, and modal
parameters are solved by suing NASTRAN. The rotor-gear stages are coupled
through nonlinear compliance in the gear mesh while the gearbox structure is
coupled through the bearing supports of the rotor system. Transient and
steady state vibrations of the coupled system are examined in both time and
frequency domains. A typical three-geared system is used as an example for

demonstration of the developed procedure.

NOMENCLATURE

Ai(t) Modal function of the i*™ mode in x-direction
A (t) Modal function of the i'™" mode in B-direction
Bi(t) Modal function of the i*" mode in y-direction

(C,,] [be] (c,,} : Gearbox damping matrices
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Bearing direct and cross-coupling damping matrices
Torsional damping matrix

Bearing excitation forces

External excitation forces

External excitation moment

Gear mesh force in x- and y-directions

Gear mesh torque

Gyroscopic-angular rotation matrix
Gyroscoplc-angular acceleration matrix
Identity matrix

Rotational mass moment of inertia matrix
Average stiffness matrix

Gearbox stiffness matrix

Compensation matrices in x- and y-direction
Gear mesh stiffness between i*™" and k" rotor
Shaft stiffness matrix

Bearing direct and cross-coupling stiffness matrix
Torsional stiffness matrix

Mass-inertia matrix of rotor

Mass-inertia matrix of gearbox

Radius of gear in the 1" rotor

Gear generated torque

Generalized motion in x- and y-directions
Gearbox motion in x-, y- and z-directions
Gearbox motion at bearing supports

Gear displacements in x~ and y-directions of
the i*" rotor

Gear forces in x- and y-directions
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Xs, Ys, Motion of rotor at bearing support

a,., Angle of tooth mesh between k™" and i*" rotor

ol Rotational displacement of the it gear
(A%], [Aczl Lateral and torsional eigenvalue diagonal matrices
[@]k, [fbt]k Lateral and torsgional orthonormal eigenvector

matrices of the k™" rotor

¢Ul jth orthonormal mode of k%" stage at 1*® node

INTRODUCTION

Recently there has been an increase in the use of gear transmissions in
both defense and commercial applications. The ever increasing speed and
torque requirements of newer transmission systems, often result in excessive
noise and vibration at both the gear stages and the gearbox structure. Today
there is a wealth of literature concerning noise and vibration reduction
through gear tooth modification and design. However, the study of the
dynamics and acoustics of the overall gear transmission system is somewhat
limited.

August (1986) studied gear system vibrations for a planetary gear system.
Boyd and Pike (1987) and Choy (1988b) used the work done by Cornell (1981) to
study the dynamics of various gear transmission systems. Mitchell (1985) and
David (1987, 1988) simulated the dynamics of multistage gear systems using the
matrix transfer method. Choy et al. (1989, 1990) calculated the dynamics of
the multistage gear systems with effects of base motion using the modal
method. Ozguven and Houser (1988) and Kahraman et al. (1990) used a finite
element model to predict the dynamics of multistage gear systems. In term of
gearbox vibration analysis, some work has been reported by Lim (1990) using
finite element analysis. Very little work, however, has been cited in the

literature concerning gearbox coupled vibration in gear transmission systems.



The work presented in this paper is the development and application of a
combined approach of using the modal synthesis and finite element method in
analyzing the dynamics of multistage gear systems coupled with the gearbox
structure. Modal equations of motion are developed for each rotor-bearing-
gear stage, using the matrix transfer method, to evaluate the modal
parameters. The modal characteristics of the gearbox structure are evaluated
using a finite element model on NASTRAN. The modal equations for each rotor
stage and the gearbox structure are coupled through bearing supports and gear
meshings. The modal equations are solved simultaneously with the appropriate
initial conditions. The modal accelerations are integrated using a variable
time-stepping integration scheme to obtain the transient vibration of the
system. A typical three stage gear system is used as an example for this
analysis. Results are presented in both time and frequency domain and in both
modal and generalized coordinates to facilitate a complete representation of
the dynamic characteristics of the system.

Development of Equations of Motion

The equations of motion for a single stage multi-mass rotor-bearing-gear
system with the coupling effects of gear-box vibrations and the rotor inertia-
gyroscopic effects can be written in matrix form for the it stage (Choy,

1987; 1989) for the X-Z plane as:

(M14R), + (G, (¥}, + [C 1 {X = X}, + [C 1y (¥ - Y}y
+ [G) (¥} + [Ky + K1, {X}, = [Ko 1 {X 0}y

# IR LAY = Yy by = {F(£) ) + {Fg, ()} (1)



and in the Y-Z plane as:

[M] {2}, = (G, 4R}y + [Cp ) (% = X}y + [Cppl (Y - Yy},
- [GA]i{x}i + [KYY + Ks]i{Y}i - [Kyy]i{ybs}i

* TR, DAY = Y}y = {F ()} + {Fg (£} (2)

Here Fx and Fy are force excitations from the effects of mass imbalance
and shaft residual bow in both X- and Y-directions. FGx and FGy are the X
and Y gear mesh forces induced from the gear teeth interaction with other
coupled gear stages. The bearing forces are evaluated through the relative
motion between the rotor {X}, {Y} and the gearbox {Xb}, {Yb} at the bearing
locations (Choy, 1987). The mass-inertia and gyroscopic effects are
incorporated in the mass matrix [M] and the gyroscopic matrices [Gv] and [GA].
The coupled torsional equations of motion for the single rotor-bearing-gear

system can be written as:
(31,08, + 101,083, + (K148}, = {Fr(t)}, + {Fo(£)}, (3)

In Eg. 3, {FT(t)} represents the externally applied torque and {FGt(t)}
represents the gear mesh induced moment. Note that Egs. (1) to (3) repeat for
each single gear/rotor stage. The gear mesh forces couple the force equations
of each stage to each other as well as the torsional equations to the lateral
equations (Choy, 1989; Cornell, 1981; and David, 1987; 1988). The coupling
relationships between the torsional and the lateral vibrations and the
dynamics of each individual gear/rotor stage are derived in the next section.

In addition, there are equations of motion for the gearbox which couple the



various rotor stages through the bearing supports. The gearbox equations can
be written as:
X-equation

(M1 4R} + [CL IR} + [C J{X, = X} + [C0{Y, - ¥} + [K, 1{X;}

- (K J{X, - X} + (K J{Y, - Y} =0 (4)

Y-equation
(M,148,) + [Cp 1LY} + [C 0 {X, - X} + [C, 1{¥, - ¥} + [K J{¥,}

- [R,, (Y, - Y.} + [K,]{X, - X} =0 (5)

YY

and Z-equation

[Mb]{ﬂb} + [Cbz]{zb} + [K,, 1{2,} =F, (t) (6)
where F . (t) is an excitation function due to external forces in the axial
direction. Since the bearing is assumed to be uncoupled in the Z-direction,
Eg. (6) can be solved independently without considering shaft motion.

Coupling of Gear Meshes

The torsional and lateral vibrations of a single individual rotor and the
dynamic relationships between each gear stage are coupled through the
nonlinear interactions in the gear mesh. Gear mesh forces and moments are
evaluated as functions of relative motion and rotational between two meshing
gears and the corresponding gear mesh stiffnesses. These gear mesh
stiffnesses vary in a repeating nonlinear pattern with each tooth pass
engagement period (August, 1986 and Cornell, 1981) and can be represented by a
high oréer poiynomial (Cornell, 1981 and Boyd, 1987). A sixth order
polynomial curve is used in this study to simulate the stiffness changes for
contacting gear pairs (zero stiffness are input for noncontacting pairs). The
repeatability of such nonlinear mesh stiffnesses can also act as a source of

steady state type of excitation to the gear system. With the coordinate
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system as shown in Fig. 1, the following gear mesh coupling equations can be

th

established by equating forces and moments (Choy, 198%). For the k= stage

gear of the system, summing forces in the X-direction results in:

n
Feoxk = 2: Kol “RoyBos Ro B + (X - X )cos @,
1=1,1#k

+ (Y, - Y, )sina, ]cos a, (7)

ci

Summing forces in the Y-direction results in:

n
FGYK = 2# Kekal _Rcieci —Rckeck + (X, - X)cos ayy
i=1,1#k

+ (Y., -Y )sina  )sina (8)
ck ki ki

ci

Summing moments in the Z-direction results in:

n
Foyk = E# R Ky [ R, 8. -R B + (X, - X, )cos @,
1=1,1 #k

+ (Y, - Y, )sin a,]} (9)

ci
where n is the number of stages in the system.

Modal Analysis

To reduce the computational effort, the number of degrees-of-freedom of
the system are reduced through modal transformation. Orthonormal modes for
each individual rotor-bearing stage are obtained by solving the uncoupled
system homogeneous characteristic equations. Using the modal expansion
approach (Choy, 1987; 1988a; and 1989), the motion of the system can be

expressed as:

m

(X} =Y A{e;}, (X} =Y A{e,,}

i=1 1=1

m m
{¥} = Y B,{e,}, {¥,} =Y B, {e,,}
i=1 i=1

m

m
2: Ag{oy)r {2, = 2: Dy {@y} (10)

i=1 i=1

Ch



where m is the number of modes used to define each motion. The

orthogonality conditions of the modes can be expressed as:

(817 (K) (9] = (A% (11)
where
K = (K, +K.)/2 +K,

2
19,17 (K, 119,1 = (A,) (12)

2
19,171k, 18,) = [A,] (13)
(17 (M3 (9] = (9,07 (M, 109,) = (1) (14)

Using the modal expansion and the orthogonality conditions, with the
bearing forces due to the base motion expressed in the right hand side of the
equation, the modal equatione of motion for the rotor bearing system
(Choy, 1989) can be written as:

X-Z equation

By + (81716, 118148} + (817(C,,1101{Ar + (9171, 1(91(B)
+ (01706, 191¢By + [A’1{A) + (817 (K, 1 181¢A}
+ (917 (K, 1191(B} = [B)7(F () + Fo (t) + Fy (T)} (15)
where

[Kgx] = [Kyl + [K,] - [K] (18)

and,

Foo(t) = [C J{X)} + [C 1{Y} + (K, J{X,} + [K J{Y,} (17)



which can also be expanded into modal parameters as

Fo(t) = [Cp (9, 1{A)} + [C, 119,,1{B,}
+ (K, (9, 1{A} + (K 109,,1{B,} (18)
Y-Z equation
By - 19)716,1181 (A} + [81°(C,, 1191 {A} + (817 [C,, 1 (B1{B}
~(9171G, 11814} + (A"1(B} + (817 (K, 1 (®]{B}

+ 1917 IR, 1181{AY = [91T{F (£) + Fo () + Fy ()} (19)

where

(Kgy] = [Kyyl + [K;] - [K] (20)

Fay(t) = [C 1%} + [Co 1{¥,} + [K, 1 {Xp} + [Ky J{¥,} (21)

which can also be expanded into modal parameters as

Fo,(t) = [Co J 18, J{AY + [C 0 (8, 0 {B) + [K, 10§, 1{A) + [K, (9, 1{B} (22)

and the B8-equation can be expressed as
2
(B} + [8,171C, 108, 14A + [AJJA) = (9,07 {F (£) + Fy (£)} (23)

The gear mesh forces and moments can also be expressed in the modal form,

for the k" stage with the gear location at the 1*" node, as:

m n

T
(91, {Fg,} = 30 okil ] 3 Kol Ry Ry b + (X - X)) cos @y
i=1 1=1,1#

+ (Y, -Y,) sin a,,] cos &, (24)

ci



m

n
T =
(q’]k{Fcy} =Y okil} ¥ Ky [-R,0., -R, 0, + (X, -X,) cosay,
i=1 1=1, 1%

(25)

+ (Y, -Y,) sin Q] sin a,;

ci

n

7 m
(91, {Fe} = X okl | B Ry {Ky [(-Reyfoy -Ry ) + (Xy = Xgy)
3=1 i=1, 178

+Co8 A, + (Y, =Y,) sin a,,] } (26)

where k 1is the stage number, j is the mode number, and 1 1is the station

location of the gear mesh.

A set of modal equations of motion can also be written for the gearbox
as:

X-equation

19,17 (M, 108, 04A,) + (8,17 (o) 19,0 4R + 18,07 (K, 118,143}
+ (8, 1T LR, I{K, - X} + [C0{%, - X}

+ (K Y, - Y} + [cxy]{Yb -¥.3}r =0 (27)

For proportional damping in the gearbox model, the equation can further

be reduced to:

[T){A)} + [CI{A,) + [Af,l{Ab} +1, 0T(Fy ()} - (8,071, 111 {A}

+[C 1 I01(B) + [K,J[®1{A} + [K1(®](B}} =0 (28)
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Similarly, the Y-equation can be written as

2
[T1{B,} + [C,J{B,} + (A 1{B} + [Qble{FBy(t)} - [¢byJT{tcyx1t01{A}

+ [C, 1 [9){BY + [K,1[®){A} + [K, ](P]{B}} =0 (29)

and the Z-equation as

[(I]{B,} + [C,){D,} + [A1{D,} = (&, 17 (F, (t)} (30)

Solution Procedure

In order to obtain a solution for the overall dynamics of the gear
transmission system, a three phase solution procedure is used, namely,

(1) (the evaluation of modal characteristics of the rotor-bearing systems and
the gearbox structure, (2) transient vibration solution of the overall
dynamics in modal coordinates, and (3) the transformation of force and
vibration data from modal into generalized coordinates. Discussions of the
three solution phases are presented in following paragraphs.

The natural frequencies and mode shapes required in the transformation of
the equations of motion for the rotor-bearing system (Egs. (1) to (3)) into
the modal equations (Egs. (15), (19), and (23)) are evaluated using the matrix
transfer method (Choy, 1989 and 1990) on a discretized lumped mass model.
Using an average stiffness value for the bearing supports, the undamped modes
are calculated using a marching search technique for the assigned frequency
range. The natural frequencies and mode shapes for the gearbox structure are
obtained by the finite element analysis using NASTRAN. The modal data from
the gearbox analysis are used to transform the gearbox equations of motion
(Egs. (4) to (6)) into their modal coordinates (Egs. (28) to (30)).

The second phase of the solution procedure involves the solution of the
coupled modal equations of motion between the rotor stages and the gearbox
structure. The coupling effects of the gear mesh and the bearing supports are

11



also expressed in modal coordinates such that the global equations are solved
gsimultaneously in modal form. Using a set of initial conditions for both
displacement and velocity of the global system, calculated from the steady
state conditions at the rotor-bearing systems and zero vibration at the
gearbox, the modal accelerations A, B, At, Ab, Bb, and Db of the system can
be evaluated (Eqs. (15), (19), (23), and (28) to (30)}). A variable time
stepping integration scheme (the Newmark-Beta Method) is used to integrate the
modal acceleration to evaluate the modal velocities and displacements at the
next time step. A regular time interval of 200 points per shaft revolution is
used in this study with a refined region of smaller steps at the gear mesh
transition period for single and multiple teeth contact.

The modal acceleration, velocity, and displacement calculated from the
transient integration scheme are transformed back into the generalized
coordinates (Eq. (10)). The nonlinear bearing forces and gear mesh forces can
be evaluated from the velocity and displacement differentials between the
rotor stages and the gearbox structure. Results from thisg solution procedure
are demonstrated in the following section using a prototypical gear
transmission system.

Discussion of Results

To demonstrate the application of the discussed analytical approach, a
three-gear transmission system given in Fig. 2 is used as an example. Note
that the gearbox is assumed to have uniform thickness throughout the enclosed
walls and is fixed to the ground at the four lower corners. Figure 3 shows
the arrangement and orientation of the gear stages inside the gearbox
structure. While all three gears have an identical 36-tooth gear and a mesh
contact ratio of 1.6, the driver (stage 1) is loﬁger and larger in diameter
than the two other stages, which are identical in geometry. Stage 1l is
supported by two bearings located at the end plates while gear stages 2 and 3

12



are supported by bearings located at both end plates and at the middle of the
gearbox, as shown in Fig. 3. BAn operating speed of 3000 rpm is used for all
three gears.

In order to calculate the global dynamics of the gearbox system, the
modal characteristics for both the gearbox structure and the rotor-bearing-
gear stages are evaluated. The finite element approach (NASTRAN) is used to
model the gearbox structure using a combination of plate elements. Table I
presents the results of the first nine natural frequencies of the gearbox
structure with their corresponding three-dimensional mode shapes given in
Figs. 4 to 6. The dynamics of each individual rotor-bearing-gear stage are
modelled using the matrix-transfer method. Using an averaged bearing
stiffness, as discussed in the previous sections, the lateral natural
frequencies and mode shapes of each rotor stages are evaluated. A similar
procedure is repeated to evaluate the torsional vibrations of the rotor
stages. Table II presents the results of both torsional and lateral natural
frequencies for all three rotor stages. Some of the lateral and torsional
mode shapes for the rotor stages are given in Figs. 7(b), 8(b) and 9(b).

Using mass imbalance in all three rotor stages as excitation input
and a nonlinear gear mesh compliance between the gear stages, the global
transient dynamics of the system are evaluated using zero initial conditions.
Figures 10 to 13 present the gearbox vibrations in terms of modal excitations
of the first 8 natural frequencies. These modal excitations (Choy, 1987;
1988a; and 1989) represent the excitability of the particular mode and are
expressed in the frequency domain using an FFT procedure to transform the
modal time variables into the fregquency domain. Note that the major component
excited in each mode is at its own natural frequency. The highest component
of excitation is in the x-direction. A moderate excitation is seen in the
y-direction, while a very small magnitude of excitation exists in the

13



z-direction. A closer examination shows that the two highest x components
occur at the second and fifth mode (462 and 575 Hz) while the highest in the
y-direction occurs at the third mode (509 Hz). Figure 14 presents the total
vibration at the upper corner of the gearbox (node 82) in both time and
frequency domains. Note that three dominant components excited in the
x-direction are located at frequencies of 462, 509, and 575 Hz with the
highest two located at 462 and 575 Hz. The Y-direction has only one major
component a 509 Hz while no significant vibration is detected in the
z-direction. This further confirms the use of modal excitation parameters
in representing the dynamic behaviors of the global system.

Figure 15 shows the orbiting motion of the gear stages during the initial
transient period. Note that the vibration of the system eventually settles
into a steady state motion. The smaller first stage orbit is due to the large
stiffness in the rotor-bearing system. The gear mesh forces between gears in
stages 1-2 and 1-3 in both time and frequency domains are given in Fig. 16.
Three major frequency components exist in the gear mesh forces at 0, 50, and
1800 Hz. They represent the static gear load at O Hz, the vibratory frequency
at rotational speed of 50 Hz, and the tooth pass frequency at 1800 Hz. The
existence of sidebands at 1800 Hz is mainly because of the shifts in the
toothpassing frequency due to the vibration of the rotor-gear system. A
further amplification of such frequency components can be seen in Figs. 7(a),
8(a), and 9(a). The modal excitation of the first lateral mode in Fig. 7(a)
has its largest component at 50 Hz due to mass imbalance at rotational speed.
The modal components of the first torsional mode in Fig. 8(a) show that the
gear load at zero frequency and the tooth pass frequency vibration are excited
in stages 2 and 3. Figure 9(a) shows that the zero gear load frequency is

excited in stage 1 at the second mode. This again further confirms the use

14



of the modal synthesis approach in analyzing dynamic behaviors in gear
transmission systems.

SUMMARY

This paper presents a vibration analysis of a gear transmission system in
which the dynamics of the gearbox structure is coupled with the vibration of
the rotor-bearing-gear stages. The analysis combines the modal
characteristics of the gear stages developed through the matrix transfer
method with the modal parameters of the gearbox evaluated by a finite element
model. The major content of this work can be summarized as follows:

1. A comprehensive procedure is developed to combine the dynamics of the
rotor-gear system with vibrations of the gearbox structure to determine the
global system response.

2. The modal method is used to transform the equations of motion into
modal coordinates before the synthesis of the global systems of equations of
motion to reduce the degrees of freedom of the system.

3. The use of modal excitation functions in the frequency domain provide
good insights of the dynamic behavior of the gear transmission system. Such
knowledge is crucial for designing transmissions with improved performance and
durability.

4. The sensitivity of the gearbox vibration, due to rotor mass imbalance
and gear mesh nonlinearity, can be evaluated using the developed methodology.
5. The initial transient dynamic analysis approach developed in this
study can also be applied to simulate conditions in which a sudden excitation

is applied to the gear transmission system.
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TABLE I. - GEARBOX
NATURAL

FREQUENCIES

Mode Hz

1 412

2 462

3 509

4 540

5 575

6 697

7 852

8 893

9 911
TABLE II. - ROTOR-GEAR STAGE NATURAL FREQUENCIES

Lateral mode, Torsional mode, Axial mode,
Hz Hz Hz

Stage 1 131 661 3 931
297 2086 5 208
1047 4197 11 724
Stage 2 123 186 1 918
187 866 4 860
390 1686 8 186
Stage 3 123 186 1 918
187 866 4 860
390 1686 8 186
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Figure 1.—Coordinate system for gear mesh force. Figure 2.—Gear transmission assembly.
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Figure 3.—Three-stage rotor-bearing-gear system.
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